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Abstract — A methodology for incorporating uncertainty in model predictions into a risk-based decision for environmental re-

“mediation is illustrated, considering polychlorinated biphenyl (PCB) sediment contamination and uptake by winter flounder
in New Bedford Harbor, Massachusetts. Sensitivity and uncertainty analyses are conducted for a model that predicts the sedi-
ment remediation volume required to meet a biota tissue concentration criterion. These evaluations help to identify the vari-
ables that most significantly contribute to uncertainty in the model prediction and allow for calculations of the expected value
of including uncertainty (EVIU) and the expected value of perfect information (EVPI) for the remediation decision. The EVIU
is the difference between the expected loss of a management decision based solely on a deterministic analysis and the expected
loss of the optimal management decision that considers uncertainty. For the illustrative application to New Bedford Harbor,
the expected loss avoided from performing an uncertainty analysis and using the resulting information to make the optimal man-
agement decision is approximately $20 miltion. The EVPI, the expected decrease in loss that can be achieved by having all un-

certainty eliminated, is approximately $16 million.

Keywords — Uncertainty analysis Value of information

New Bedford Harbor

INTRODUCTION

Uncertainties and unknowns are pervasive in risk-based
environmental remediation problems and impact the deci-
sions made to address those problems. Nevertheless, risk-
management decisions often rely on nominal predictions
from mathematical models, typically with little or no infor-
mation about the reliability of those predictions. Normally,
a mathematical model of environmental fate processes is de-
veloped, nominal parameter values are selected, a simulation
is performed to generate a nominal prediction, and a man-
agement decision is made based on this prediction. Intermedi-
ate steps may include (a) model calibration, the adjustment
of parameter estimates to obtain a good fit between model
predictions and site-specific observations; (b) model verifi-
cation, a test of the predictive ability of the model compared
to a new independent data set; and (c) sensitivity analysis,
the determination of the effects of changes in model input
values, parameters, or assumptions on model outputs. An
uncertainty analysis, the computation of the total uncertainty
induced in a model output by quantifying uncertainty in the
inputs, parameters, or model structure, is useful in assess-
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ing the reliability of predicted values and in informing the
decision process, but is less commonly performed, reported,
and used. This is troublesome because the importance of un-
certainty depends not only on its magnitude but also on how
much it can affect the management decision.

This report presents results from an ongoing project to
implement and evaluate a risk-based decision framework for
a current environmental risk-management problem: poly-
chlorinated biphenyl (PCB) contamination in New Bedford
Harbor, Massachusetts. The framework utilizes Monte Carlo
uncertainty analysis to examine alternative decisions and to
determine the value of information for the problem. Monte
Carlo techniques are numerical methods for propagating un-
certainty through models and have become widely accepted
tools for analyzing uncertainty, risk, and decision making
[1-12]. Value-of-information analysis provides a conceptual
framework for assessing the benefits of including a realistic
assessment of uncertainty in the decision-making process and
the subsequent benefits of reducing this uncertainty. This ar-
ticle presents analyses based on a model of PCB uptake in
the aquatic food chain of New Bedford Harbor developed
from a description by Connolly {13]. The analyses include
a baseline deterministic computation of the sediment reme-
diation volume required to meet a biota tissue concentration
criterion for winter flounder in New Bedford Harbor, a sen-
sitivity analysis to determine which uncertain variables most
significantly contribute to uncertainty about flounder PCB
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body burden, an uncertainty analysis for flounder PCB body
burden, and, finally, a calculation of the expected value of
including uncertainty (EVIU) and the expected value of per-
fect information (EVPI). The EVIU is the difference between
the expected loss of the optimal management decision based
on the deterministic analysis and the expected loss of the op-
timal management decision based on the results of the un-
certainty analysis. The EVPI is the difference between the
expected loss of the optimal management decision based on
the results of the uncertainty analysis and the expected loss
of the optimal management decision if all uncertainty were
eliminated.

New Bedford Harbor is one of the largest fishing ports
in the United States; at $71 million, New Bedford’s catch
ranked fifth among U.S. ports in 1980 [14]. While the port
remains active, the harbor itself, formerly a commercial fin-
fish, lobster, and shellfish fishery, has been closed to fish-
ing since 1979 and was designated a Superfund site because
of PCB contamination [15]. Inner New Bedford Harbor is
reported to contain the nation’s highest ambient PCB con-
centrations [16]. According to one estimate (1985 dollars),
total costs due to PCB contamination are expected to be on
the order of $130 million to $150 million; of that, resource
damage costs total $44 million to $55 million, and pilot and
Phase I cleanup costs total $20 million [14].

The principal objectives of the current work are to imple-
ment uncertainty and value-of-information analyses in an ac-
tual problem setting, to demonstrate their potential benefits,
and to encourage the general use of these techniques. This
report is intended to illustrate the methods and is not for use
as a basis for current or pending management decisions for
New Bedford Harbor. Despite this caveat, the report pro-
vides a reasonably realistic demonstration of the implemen-
tation of uncertainty and value-of-information analyses to
address a current environmental risk-management problem.

METHODS
Sensitivity and Monte Carlo uncertainty analysis

Sometimes, rather than using the most likely value, an un-
certainty factor is used in risk-based decision making to en-
sure that the management decision made is protective of
human or ecosystem health. These uncertainty factors are
themselves uncertain, and the degree of conservatism of the
final decision is unknown and controversial. An alternative
approach to avoiding errors from underestimation of risks
and undermitigation of their causes is to set model inputs and
parameters at conservative values. Problems with this ap-
proach include a lack of assurance of consistent results from
analysis to analysis and uncertainty about the degree of con-
servatism in the final result. The solution may lie in using sen-
sitivity and uncertainty analysis to assess quantitatively the
uncertainty in the model output and then formally incorpo-
rating this information into the decision-making process.

The sensitivity of the model to changes in input variables
can be determined using a nominal range sensitivity analy-
sis; that is, the change in the model output due to a change
in a model input is calculated while all other inputs are held
at their nominal or base case values [8]. A sensitivity analy-
sis can be used to screen a large set of candidate variables to

identify those which could contribute significantly to the out-
put uncertainty. Those variables that can contribute signifi-
cantly should be included in an uncertainty analysis.

Uncertainty analysis is the computation of the total un-
certainty induced in the output of a model by quantifying un-
certainty in the inputs [8]. Uncertainty in model outputs can
come from several sources including model structure, input
values, and parameters. In the application presented here,
uncertainty in model structure is not considered, only uncer-
tainty in the model inputs and parameters. A distinction
should be made between those variables that have a true but
unknown value and variables with an underlying probabi-
listic structure arising from stochastic variability [8,17]. Un-
certainty arising from the first situation, sometimes called
ignorance, is reducible through scientific study and informa-
tion gathering. Uncertainty arising from the second situation,
sometimes called variability, has an irreducible component
due to the stochastic nature of the underlying phenomenon.
Many parameter values used in environmental risk models
have components of both types of uncertainty.

Monte Carlo methods are techniques for generating a rep-
resentative sample from probability density functions (pdfs)
of the model inputs and parameters and propagating that
sample through the mathematical model to produce a cor-
responding sample from the pdf of the model prediction. The
procedure involves a random selection of values, one from
each input pdf, which together define a scenario that is used
in the model to compute an output value. The procedure is
repeated for N iterations yielding NV output values, which
characterize the uncertainty in the model prediction. Simple
Monte Carlo sampling involves random selections of values
from input pdfs while Latin hypercube sampling takes a strat-
ified approach; the input pdfs are subdivided into N inter-
vals of equal probability, and a value is selected at random
from each interval [18]. Latin hypercube sampling was used
in this study because it ensures that the entire input distribu-
tions are sampled and allows the output distribution to be
characterized with a smaller number of iterations.

Decision analysis and the value of information

Decision analysis as it is used here is based on the semi-
nal work of Raiffa {19]. Decision analysis is a technique to
help organize and structure the decision maker’s thought pro-
cess, elicit judgments from the decision maker or other ex-
perts, check for internal inconsistencies in the judgments,
assist in bringing these judgments together into a coherent
whole, and process the information and identify a best strat-
egy for action. It assumes the decision makers want to act
in ways that are logically consistent with their basic prefer-
ence for consequences and their basic judgments about un-
known states or events.

Decision analysis relies heavily on the Bayesian statisti-
cal point of view [20]. The Bayesian, or subjectivist, view is
that probabilities can and should be assessed by using intu-
ition, judgment, and past experience. In Bayesian statistics,
the subjective prior probabilities can be combined with new
data to reach an updated, or posterior, information state.

An interesting aspect of decision analysis is the calcula-
tion of the value that additional information may have to the
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decision maker. Value-of-information analysis is increasingly
being used in environmental risk analysis [21-24]. The ex-
pected value of information (EVOI) is the expected increase
in the value (or decrease in the loss) associated with obtain-
ing more information about quantities relevant to the deci-
sion process and taking the appropriate action based on this
information [19]. The EVOI can be thought of as a measure
of the importance of uncertainty about a quantity in terms
of the expected improvement in the decision that might be
obtained from having additional information about it. The
expected value of including uncertainty (EVIU) is a measure
of the value of explicitly modeling uncertainty in a quantity
instead of assuming a fixed value [8]. It is the expected dif-
ference in value of a decision based on a probabilistic anal-
ysis and a decision made from an analysis that ignores
uncertainty. The EVIU is an effective tool for assessing the
benefits of undertaking and using an uncertainty analysis.
The expected value of perfect information (EVPI) is the dif-
ference between the expected loss of the optimal management
decision based on the results of the uncertainty analysis and
the expected loss of the optimal management decision if all

" uncertainty were eliminated. In this article we demonstrate
the calculation of the EVIU and the EVPI for the New Bed-
ford Harbor remediation decision.

MODEL FORMULATION

A model of PCB uptake in the aquatic food chain of New
Bedford Harbor was developed from a description by Con-
nolly of mass balance relationships, nominal parameter val-
ues, field data, and predictions performed as part of the
Remedial Investigation/Feasibility Study (RI/FS) for the
New Bedford Harbor Superfund site [13]. Connolly devel-
oped both lobster and winter flounder food chain models;
this report, however, focuses exclusively on the flounder food
chain because flounder are found in the inner harbor [16].
Connolly also modeled PCB uptake in polychaetes, a repre-
sentative benthic invertebrate prey population. In this anal-
ysis, PCB body burden in polychaetes is treated empirically
using greater New Bedford Harbor observations to model
polychaete body burden as a function of sediment concentra-
tion (Fig. 1). Reported average total PCB concentrations in
surface sediment range from ~360 ug PCBs/g carbon (g(C))
in the inner harbor to ~25 ug PCBs/g(C) at the periphery
[13]. Body burden and sediment data were collected on three
cruises in 1984 and 1985 by Battelle Ocean Sciences as part of
the New Bedford Harbor RI/FS [25]. Based on low observed
cruise-to-cruise variability, Connolly used a time-averaged
PCB concentration as a model input; that assumption is car-
ried through to this analysis. The second prey population in
the flounder model is phytoplankton. As in Connolly’s anal-
ysis, phytoplankton body burden is assumed to be in dynamic
equilibrium with dissolved PCBs, with a log,, bioconcentra-
tion factor of 4.6. The dissolved PCB concentration is mod-
eled as an empirical function of sediment concentration,
again using RI/FS data collected in different areas of greater
New Bedford Harbor (Fig. 2). Reported average total dis-
solved PCB concentrations range from ~70 ng PCBs/L in
the inner harbor to ~2 ng PCBs/L at the periphery [13].

Polychaete PCB Body Burden (g PCBs/g(w))
i
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Fig. 1. Average total PCB body burden for polychaetes (ug PCBs/
g(w)) vs. average total PCB concentration in sediment (ug PCBs/
g(C)) for four areas of New Bedford Harbor, Massachusetts.

The accumulation of PCBs in winter flounder was pre-
sumed to be described by the following differential mass bal-
ance [13,26]:

dvi 1
d_l‘ =Kuc+ ZaCijwj—-(K-F G)Uis (1)
j=1

where
v; = body burden of PCBs in flounder age class i
(ug PCBs/g(w), g(w) = g wet weight)
K, = rate coefficient for uptake of PCBs across the gill
(L/7g(w) d)
¢ = dissolved concentration (ug PCBs/L)
o = assimilation efficiency of PCBs (dimensionless)
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Fig. 2. Average total dissolved PCB concentration (ug PCBs/L) vs.
average total sediment PCB concentration (ug PCBs/g(C)) for four
areas of New Bedford Harbor, Massachusetts.
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Cj; = consumption rate of age class / on prey popula-
tion j (g(w) prey/g(w) predator d)

w; = body burden in prey population ;j (ug PCBs/g(w))

K = rate coefficient for excretion of PCBs (1/d)

G = growth rate coefficient (g(w)/g(w)d).

The first term on the right side of Equation I represents di-
rect uptake of PCBs from water, the second term represents
uptake from food, and the third term represents losses due
to desurption and excretion, as well as dilution due to growth
in flounder age class ;. The parameter values shown here are
functions of the variables discussed later in the Sensitivity
Analysis section (Table 1), A more detailed presentation of
the model is given in Connolly {13].

Because some of the parameters are age dependent, the
flounder population is modeled using six age classes: up to
I year, I to 2 years, 2 to 3 years, 3 to 4 years, 410 5 years,
and 5 to 6 years. The differential mass balance was solved
numerically using seasonally varying chemical uptake and ex-
cretion rate coefficients and prey body burdens. In addition,
an analytic solution was found by assuming time-invariant
model parameters. As expected, the numerical and analyti-
cal solutions gave similar predictions because seasonal vari-
ations tended to cancel owing to the use of 1-year flounder
age classes and predicted end-of-year body burdens. The
analysis reported here was performed using the analytical
solution:

(1) = vy(0) e~ KO

KUC'{‘O(ZCUWJ

j=1

(K + G)

(1 _ e—(K+G)1)‘ (2)

Use of the analytical solution made it possible to code the
model using the spreadsheet program Excel along with a
risk-analysis add-in package, @RISK. This modeling envi-
ronment proved to be conducive to exploratory graphical
analysis of simulation results, providing useful insights into
both the results and the method.

For each flounder age class, a single spreadsheet is used
to model total PCB body burden in flounder in inner New
Bedford Harbor. Age-class models are linked such that end-
of-year body burden for age class /is read as the initial body
burden for age class i + 1. According to Connolly (J.P.
Connolly, personal communication), although flounder were
modeled up to age 6, the New Bedford Harbor RI/FS floun-
der catch tended to be younger. Thus, in the analysis, remedi-
ation objectives are expressed in terms of average 2-year-old
flounder body burden.

RESULTS
Assumed management scenario

Remediation of New Bedford Harbor to restore it to a
safe and viable fishery will almost certainly involve the re-
moval of some portion of the contaminated sediment in the
inner harbor. This removal will decrease PCB concentration
in the sediment, leading to a decrease in PCB concentration
in the water column and ultimately, in the biota.

Assume the environmental remediation question to be ad-
dressed is, “How much sediment remediation must occur in
inner New Bedford Harbor to reduce the total PCB body
burden of flounder to a safe level for human consumption?”
The Food and Drug Administration’s action level for PCBs
in the edible portion of fish is 2 1ug PCBs/g(w). For illustra-
tive purposes, a more protective criterion requiring that sed-
iment remediation continue until total PCB body hnrden in
an average 2-year-old flounder falls at or below 2 ug PCBs/
g(w) will be used in this analysis.

Currently, the best estimate of average total PCB concen-
tration in the sediment in the inner harbor is 360 ug PCBs/
g(C) [13]. Assuming PCB concentrations in the water, in
phytoplankton, and in polychaetes are proportional to sed-
iment concentration, and noting that body burden at birth
is zero, it can be seen (Eqn. 2) that a reduction in sediment
concentration will lead to approximately the same propor-
tional reduction in the flounder body burden. Dissolved PCB
concentrations and prey body burdens are, at least approxi-
mately, proportional to the sediment PCB concentration
(Figs. 1 and 2), so the proportional reduction assumption in
the sediment and flounder body burden concentrations seems
reasonable. This assumption was tested by running the model
at different sediment concentrations. It was found that for the
level of accuracy required to make remediation decisions, the
ratio of the pre- to postremediation sediment concentrations
is equal to the ratio of the pre- to postremediation body bur-
dens. Predictions based on proportional reduction were within
about 1 pg PCBs/g(C) of predictions found by running the
model with reduced sediment concentrations; this difference
is probably insignificant from a statistical point of view and
negligible from a management perspective. Consequently, the
target sediment concentration can be calculated as follows:

BB rge -8C vera
SClarget = laBgBt o ge, 3)
average

where SC,,,., is the target sediment concentration (ug PCBs/
8(C)), BBy is the target 2-year-old flounder body burden
(2 ng PCBs/g(w)), SCaverage IS the current average total PCB
concentration in the sediment (360 rg PCBs/g(C)), and
BB;yerage 15 the average 2-year-old flounder body burden
(pg PCBs/g(w)).

Sediment concentrations in the 985-acre (approximately
4 million m?) inner harbor are not uniformly distributed;
localized concentrations are reported to range from 10° to
10° ug PCBs/g(C), so it is difficult to assess the areal extent
of remediation that would be required to attain a specified
target sediment concentration [15]. A preliminary model was
developed using data from the pilot New Bedford Harbor
dredging project [16]. The top meter of sediments in a 5-acre
(approximately 20,000 m?) “hot spot” of the inner harbor is
estimated to contain roughly half of the total PCBs. Assum-
ing a roughly 50% reduction in sediment PCBs for every
20,000 m? dredged to a depth of 1 m, the relationship be-
tween the average harbor sediment concentration and area
dredged can be approximated by

SClargel = SCaverage exp(—3.5- IO-SA ) (4)




where A is the area to be dredged (m?) and 3.5-107° is the

COrresponding removal rate coefficient (1/m?). Solving for

A gives

®

SCu
A= —2.86-1041n<—ﬂ>.

average

Deterministic analysis

The model, without taking uncertainty into account, can
now be used to answer the remediation question. The model
estimates average 2-year-old flounder body burden in the in-
ner harbor to be 8.8 ug PCBs/g(w). Back-calculating the level
necessary to meet the management criterion of 2 ug PCBs/
g(w) gives a target average sediment concentration of 82.2 ug
PCBs/g(C), which can be achieved by dredging 42,200 m?
of inner New Bedford Harbor sediment.

Sensitivity analysis

The variables to be considered in the sensitivity analysis
were selected after an examination of supporting material for
the model (J.P. Connolly, personal communication). They
include model inputs, parameters related to characteristics
of PCBs, and parameters related to characteristics of win-
ter flounder. It is believed that the final list includes all im-
portant sources of uncertainty as well as some that may be
relatively unimportant (Table 1). The sensitivity analysis
should identify those variables that are important and, there-
fore, should be included in the uncertainty analysis. Back-
ground research was done to identify plausible ranges for the
variables; however, because the sensitivity analysis is used
only as a screening tool, the ranges used are only estimates
of the true ranges.

Total PCB concentration in the sediment of inner New
Bedford Harbor was derived from Connolly’s summary of
RI/FS cruise data reported in his Figure 3 [13]. The total sed-
iment PCB concentration was reported to have a mean of
360 pg PCBs/g(C) and was assumed to have a standard de-
viation approximately equal to 10% of the mean, resulting
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in a range of 260 ug PCBs/g(C) to 460 pg PCBs/g(C). The
log of the octanol/water partition coefficients for the homo-
logues included in Connolly’s analysis ranged from 5.5 to 6.5;
therefore, this range was used for the total PCB mixture.
Likewise, Connolly’s reported relationship between the phy-
toplankton bioconcentration factor and octanol/water par-
tition coefficient shows the log of the bioconcentration factor
ranging from about 4.0 to about 5.2 over the range of par-
tition coefficients used.

Information on the mean and standard deviation of the
average water temperatures for inner New Bedford Harbor
for each month of the year was obtained and used to calcu-

*late a plausible range of values for average water tempera-

ture from 9 to 13°C [27,28]. The average water temperature
was then used to compute the dissolved oxygen concentra-
tion, a factor in the computation of the rate coefficient for
PCB uptake across the gill, using an empirical relationship
developed from data in the 5 to 15°C range (salinity 35 ppt,
pressure 760 mm Hg) [29]. In this restricted range of temper-
atures, the relationship can be modeled very well using the
equation [O,] = 11.43 — 0.28T + 0.004T2, where [O,] is the

" concentration of oxygen (g/L) and T is the average water

temperature (°C).

The chemical assimilation efficiency describes the fraction
of ingested chemical that is absorbed. Connolly reported
finding chemical assimilation efficiency values in the litera-
ture ranging from 0.2 to 0.9. The food assimilation efficien-
cies of carnivorous fish, 75 to 85%, determined the range
used for flounder [20]. Ranges for first- and second-year
growth rate coefficients were determined by using Connolly’s
six values, fitting an exponential curve, and estimating lower
and upper limits. This resulted in a range for the first-year
growth rate coefficient of 0.012 to 0.014 and for the second-
year coefficient of 0.0062 to 0.0064. The ratio of the dry
weight of flounder to total body weight was estimated to
range from 0.2 to 0.3, lipid fraction of the fish from 0.01 to
0.03, and weight at birth from 0.07 to 0.13 g.

The sensitivity of the model to changes in each variable

Table 1. Variables included in the sensitivity analysis on predicted PCB body burden (zg PCBs/g(w))
for 2-year-old winter flounder in inner New Bedford Harbor along with the low, nominal,
and high values of the variables and their calculated sensitivities

Sensitivity®

Variable Low Nominal High (pg PCBs/g(w))
Chemical assimilation efficiency 0.2 0.4 0.9 13.1°
PCB concentration in sediment (ug PCBs/g(C)) 360 460 5.3P
Average water temperature (°C) 11 13 1.2°
Food assimilation efficiency (g(w)/g(prey)) 0.75 0.8 0.85 0.9°
Growth rate coefficient —year 1 (g(w)/(g(w)day)) 0.012 0.013 0.014 0.7°
Weight at birth (g(w)) 0.07 0.1 0.13 0.6"
Fraction dry (g(d)/g(w)) 0.2 0.25 0.3 0.4
Log octanol/water partition coefficient 5.5 6.0 6.5 0.3
Log bioconcentration factor for phytoplankton 4.0 4.6 5.2 0.2
Fraction lipid (g(1)/g(w)) 0.01 0.018 0.03 0.2
Growth rate coefficient — year 2 (g(w)/(g(w)day)) 0.0062 0.0063 0.0064 0.1

aThe absolute value of the difference in predicted flounder PCB body burden (ug PCBs/ g(w)) using the low and high
values of the variable with all other variables held at their nominal levels.
®Makes an important contribution to the uncertainty in the model prediction.
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Table 2. Variables included in the uncertainty analysis on predicted PCB body burden (ug PCBs/g(w))
for 2-year-old winter flounder in inner New Bedford Harbor along with the form and
parameters of the variables’ probability density functions (pdfs)

Most

Variable pdf Minimum likely Maximum SD
PCB concentration in sediment (ug PCBs/g(C)) Normal — 360 — 30
Average water temperature °C) Normal - 11 -~ 0.67
Weight at birth (g(w)) Normal — 0.1 — 0.01
Chemical assimilation efficiency Triangular 0.2 0.4 0.9 -
Food assimilation efficiency (g(w)/g(prey)) Triangular 0.75 0.80 0.85 —
Growth rate coefficient —year 1 E(w)/(g(w)dy) Uniform 0.012 — 0.014 -

was evaluated by finding the model prediction of PCB body
burden in 2-year-old flounder at the low and high levels of
the variable, holding all other variables at their nominal val-
ues and then calculating the absolute value of the difference
in the model predictions (Table 1). Those variables with a
sensitivity over 0.5 ug PCBs/g(w) were considered to make an
important contribution to the overall model uncertainty. The
results of the sensitivity analysis indicate that six variables
should be included in the uncertainty analysis: total PCB con-
centration in the sediment, average water temperature, first-
year growth rate coefficient, food assimilation efficiency,
chemical assimilation efficiency, and flounder birth weight.

Uncertainty analysis

The form of the probability density functions, along with
their associated parameter values, were determined for each
of the six variables (Table 2). Distributions were selected to
reflect the amount of information available, and parameter
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values were chosen to scale the distributions to the appropri-
ate minimum and maximum values. Where triangular distri-
butions were used, the most likely values were set equal to
the point estimates used by Connolly [13].

Independent uncertainty distributions were selected for
ease of sampling, although some correlations among the vari-
ables may exist. Algorithms for sampling from correlated in-
put distributions are now available in commercial Monte
Carlo analysis software including @RISK; however, the spec-
ification of the correlation structure is problematic. Future
investigations of the sensitivity of the model predictions to
the assumption of independence are needed as well as re-
search into protocols for eliciting joint parameter distribu-
tions [31].

A Monte Carlo uncertainty analysis with Latin hypercube
sampling was carried out using 10,000 iterations to ensure
stability in the tails of the output distribution (Fig. 3). The
distribution of predicted values for 2-year-old flounder body
burden is unimodal and skewed right, ranging from 3.4 to

l--e-%4
15 20 25

Flounder PCB Body Burden (ng PCBs/g(w))

Fig. 3. Histogram showing the probability distribution of total PCB body burden in 2-year-old flounder (ug PCBs/g(w)) in i_nner New Bed-
ford Harbor, Massachusetts. This distribution was generated using a Monte Carlo simulation with Latin hypercube sampling and 10,000

iterations.




0pe PCBs/g(w) with a 10th percentile of 7.0, a mean of
jp5.anda 90th percentile of 14.6 ug PCBs/g(w). This dis-
}r jbu,liorl contrasts with a point estimate from the model of
3818 PCBs/g(w).

[ oss function
. Two point estimates of the remediation cost per unit vol-
ume of PCB-contaminated sediment were found. The first,
ka 1987 assessment by the U.S. Environmental Protection
Agency (EPA), reports a cost of $1,700 to $1,800/m3 (1985
* dollars) for dredging, transport, and incineration [32]. The
~authors characterize this estimate as highly uncertain. A sec-
ond estimate is based on a reported cost of about $700/m?
(1990 dollars) for a “hot spot” dredging and incineration pilot
remediation project for New Bedford Harbor [16]. Because
* ihe second figure is more recent and is based on an actual
PCB remediation project in New Bedford Harbor, it is prob-
ably more reliable. Based on these figures, a unit remedia-
tion cost of $1,000/m> was assumed in this analysis.
Assuming a dredging depth of 1 m, the problem becomes
one of determining dredging area. Let A4 represent the area
dredged under the management decision and A, represent
the correct (but unknown) area necessary to dredge to just
meet the management criterion for PCBs in fish of 2 ug PCBs/
g(w). If Aq = A, sufficient remediation has been performed
at a cost of $1,000/m?; therefore, there is no loss due to un-
derremediation, and the total expected loss is simply the cost
of dredging, $1,0004,4. If A4 < A, less remediation than
necessary has been performed, and the management criterion
of 2 ug PCBs/g(w) will not be met. Underremediation is a

PPIopri:
ir distrj-
>qual tg

ted for
he vari.
ated in.
Monte
1€ spec-
Future
ions to

as re-
stribu-

ercube

1sure

). The serious error and can have several consequences, each with
body an associated cost. First, the additional remediation must still
3.4 to be done; assuming that the cost has not changed and that the

amount of additional dredging needed becomes known, this
will bring the total area dredged up to A, so that the reme-
diation costs ultimately total $1,0004.. However, a serious
consequence of underremediation is that the fishery will re-
main closed for longer than necessary; it is difficult to assess
the costs related to this consequence, but one estimate places
the value of the fishery at about $7 million per year in 1985
dollars [14]. If the conservative assumption is made that the
fishery will remain closed for 5 additional years were the har-
bor to be inadequately dredged and a zero discount rate is
assumed, this results in a penalty for underremediation of $35
million. Other consequences will include additional costs
from remobilizing the research and remediation effort; this
cost was estimated at $15 million, about half of the original
cost to EPA. Together these figures estimate a total penalty
for underremediation of $50 million. Ignored in this analy-
sis were the costs that may be incurred from a loss of public
trust and confidence. Summarizing, the loss function is

L(A4,4[A.) =$1,000 Ay for Aqg = A,
$1,000 A, + $50 million for Ay < A, (6)
where L(Aq4]A,) is the loss associated with making decision

Aq when A, is the correct decision to meet the management
criterion.

>d-
00
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Expected loss

The expected loss for any management decision Ay is
simply the expected value of the loss function evaluated at
Aq4 taken over the probability space of A.. This can be ex-
pressed as

E[L(Ay)] =f L(Ag|Ac)fac(Ae) dA, )

Ac

where fa.(A.) is the probability distribution function asso-
ciated with A, due to the uncertainty present in the model
prediction. Because a Monte Carlo simulation with N itera-
tions has been used to characterize the probability distribu-
tion for flounder body burden, these values can be used to
calculate the appropriate remediation level for each case. This
results in an expected loss equation of

N
E[L(Ag)] = X, L(Aq| Ac))p; ®)

i=1

where A ; (m?) is the correct area to dredge based on the ith
iteration of the Monte Carlo simulation, N is the number of
iterations from the Monte Carlo simulation, and p; = the
probability of the ith iteration = 1/N. This equation then be-
comes simply a computation of the average loss for a fixed
Agq over the N iterations from the Monte Carlo simulation:

1 N
E[L(A)] = NZL(AﬂAc,i). ©

i=1

The optimal management decision is found by calculating the
expected loss for a series of values of A4 and identifying the
value with the minimum expected loss.

Expected value of including uncertainty

The expected loss was calculated for a series of manage-
ment decisions (Fig. 4). The management decision without
considering uncertainty (42,200 m?) was made using nomi-
nal values of model parameters and has an expected loss of
approximately $82 million. The optimal management deci-
sion, found by selecting the value that minimizes the expected
loss function, is to dredge 60,000 m? of inner New Bedford
Harbor; this has an expected loss of approximately $62 mil-
lion. The expected value of including uncertainty is calculated
as the difference between the expected loss from the nomi-
nal management decision and the expected loss from the de-
cision made while taking uncertainty into account, in this case
$20 million.

This $20 million value, the expected loss avoided by se-
lecting the greater amount of remediation suggested by the
optimal choice under uncertainty rather than the lesser
amount of remediation determined from the nominal model
parameters, will change if other decision rules are used for
the deterministic assessment. Other decision rules may in-
volve the use of a safety factor, the selection of conservative
values of the input parameters, or the selection of a conser-
vative value of the output distribution to determine the ex-
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Fig. 4. Expected loss function in millions of 1985 dollars for sediment remediation areas from 30,000 to 90,000 m? in inner New Bedford
Harbor, Massachusetts. The total expected loss is broken down into cost of remediation and expected loss due to underremediation.

tent of the remediation. However, unless the alternative
decision rule leads to the same result as the optimal manage-
ment decision, the expected loss will be greater than that of
the optimal decision and the EVIU will be greater than zero.

Expected value of perfect information

For most of the potential management decisions, a con-
siderable portion of the expected loss is due to the risk of un-
derremediation (Fig. 4). This underremediation risk results
from the uncertainty that exists about current flounder PCB
body burdens. The implication is that remediation costs can
be reduced by reducing uncertainty; this is another example
of the value of information. Consider the simple and limit-
ing case of perfect information (i.e., all uncertainty is elim-
inated). In this case, the correct remediation decision is
always made so that Ay = A, and the remediation cost is
$1,000A4.. Given our current uncertainty in flounder PCB
body burden, and therefore our uncertainty about 4., the
expected loss under perfect information is

ElL(perfect information)]

=f ($1,0004,) /4. (A,) dA, (10)
NAC

= Z ($1,0004, ;) p; (10
1?1 N

= 7\72 (81,0004, ;) (12)

which for our case equals approximately $46 million. This
value is less than the expected loss of the optimal decision
considering uncertainty by $16 million. This $16 million is
the expected savings that would accrue with perfect informa-
tion, or the expected value of perfect information.

In actual application, no research plan or data-collection
program can completely eliminate uncertainty, only reduce
it. The EVPI is thus an upper bound for the expected value
of efforts to reduce uncertainty. More sophisticated meth-
ods, which consider potential partial reductions in uncer-
tainty from different research or data-acquisition plans, are
needed to determine the value of these plans. These meth-
ods are the subject of future reports planned to illustrate fur-
ther the application of the decision analytic framework to
risk-based environmental remediation.

CONCLUSIONS

The analyses reported in this article have demonstrated
that there can be substantial economic value in formally con-
sidering uncertainty in risk-based environmental remediation
decision making. This is true for the illustrative New Bed-
ford Harbor case even though including uncertainty led to
an increase in the sediment remediation volume over the
management decision arising from the deterministic analy-
sis due to the high expected losses associated with under-
remediation. Defining a loss function in this way makes the
penalties for under- and overconservatism explicit, and for-
mally using this loss function in the decision-making process
balances competing penalties, minimizes long-term costs, and



o ~,helb5 an environmental decision maker determine an optimal
sirategy: N .
. {p addition to providing information about the manage-
ot decision, analyses of this type can help deterrpine the
Jevel of resources that should be expended on additional re-
search or data collection to better characterize or to reduce
uncertainty. In this case, the EVIU was not adjusted down-
- ward to include the cost of performing the uncertainty anal-
ysis; however, it does provide an estimate of the maximum
amount that should be spent on carrying it out. Similarly,
ihe EVPI provides an upper estimate on the expected value
of efforts to reduce uncertainty. Also, the sensitivity analy-
sis provides insights into how resources could be spent to
achieve the most cost-effective reduction in uncertainty.
Coupled Monte Carlo uncertainty and value-of-informa-
tion analyses offer promising opportunities to improve the
effectiveness of environmental modeling to support risk-
based environmental remediation decision making. Together,
these methods can provide decision makers with the tools to
make better-informed decisions. The emerging possibilities
for this integrative approach to modeling and decision anal-
ysis are broad and exciting.
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