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ABSTRACT
Biota–sediment accumulation factors (BSAFs) and biota–sediment accumulation regressions (BSARs) are statistical models

that may be used to estimate tissue chemical concentrations from sediment chemical concentrations or vice versa. Biota–
sediment accumulation factors and BSARs are used to fill tissue concentration data gaps, set sediment preliminary
remediation goals (PRGs), and make projections about the effectiveness of potential sediment cleanup projects in reducing
tissue chemical concentrations. We explored field‐based, benthic invertebrate biota–sediment chemical concentration
relationships using data from the US Environmental Protection Agency (USEPA) Mid‐Continent Ecology Division (MED) BSAF
database. Approximately two thirds of the 262 relationships investigatedwere very poor (r2<0.3 or p‐value�0.05); for some
of the biota–sediment relationships that did have a significant nonzero slope (p‐value<0.05), lipid‐normalized tissue
concentrations tended to decrease as the colocated organic carbon (OC)‐normalized sediment concentration increased.
Biota–sediment relationships were further evaluated for 3 of the 262 datasets. Biota–sediment accumulation factors, linear
regressions, model II regressions, illustrative sediment PRGs, and confidence intervals (CIs) were calculated for each of the
three examples. These examples illustrate some basic but important statistical practices that should be followed before
selecting a BSAR or BSAF or relying on these simple models of biota–sediment relationships to support consequential
management decisions. These practices include the following: one should not assume that the relationship between chemical
concentrations in tissue and sediment is necessarily linear, one should not assume the model intercept to be zero, and one
should not place too much stock on models that are heavily influenced by one or a few high chemical concentration data
points. People will continue to use statistical models of field‐based biota–sediment chemical concentration relationships to
support sediment investigations and remedial action decisions. However, it should not be assumed that the models will be
reliable. In developing and applying BSAFs and BSARs, it is essential that best practices are followed and model limitations
and uncertainties are understood, acknowledged, and quantified as much as possible. Integr Environ Assess Manag
2014;10:102–113. © 2013 SETAC
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INTRODUCTION
Biota–sediment accumulation factors (BSAFs) are ratios of

paired sediment and tissue chemical concentrations, whereas
biota–sediment accumulation regressions (BSARs) are regres-
sion relationships for paired sediment and tissue chemicals
concentrations. Both are statistical models that are used to:
�

A

*

P

(

D

Estimate tissue chemical concentrations based on sediment
chemical concentrations when empirical tissue data are
lacking
�
 Estimate future tissue chemical concentrations under
alternative conditions (e.g., remedial actions, routine
navigation dredging, open‐water disposal)
�
 Estimate sediment preliminary remediation goals (PRGs)
from risk‐based tissue chemical concentrations
These 3 applications are common in risk assessments and
feasibility studies at contaminated sediment sites as well as for
dredge material sites.
ll Supplemental Data may be found in the online version of this article.
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Both theUSEnvironmental ProtectionAgency (USEPA) and
the US Army Corps of Engineers (USACE) provide online
databases for BSAFs (e.g., USEPA 2008; USACE 2009), and
the USEPA has provided a methodology and guidelines for
developing BSAFs (Burkhard 2009; USEPA 1994, 2000).
Early applications of BSAFs were based on equilibrium

partitioning theory and the assumption that lipid‐normalized
tissue concentrations could be reasonably predicted as a
multiple of organic carbon (OC)–normalized sediment con-
centrations (Lake et al. 1990; Ankley et al. 1992; Lee 1992;
McFarland 1995; Pruell et al. 1990). Although BSAFs are
relatively easy to calculate and use, the conditions for which
they were originally intended—estimating chemical concen-
trations in benthic infaunal organisms exposed to contaminated
sediment—generally do not drive sediment management
decisions. Those decisions tend to be driven by tissue chemical
concentrations in the fish and shellfish consumed by wildlife
and people. Using BSAFs to predict tissue chemical concen-
trations in demersal or water column organisms at sites with
multiple sources of chemicals (e.g., sediment, groundwater and
surface water discharges, atmospheric deposition) and varied
environmental conditions (e.g., hydrogeomorphology, habitats,
food webs) deviates significantly from the conditions for which
they were originally intended (i.e., conditions under which
sediment chemical concentrations and sorptive phenomena
govern tissue chemical concentrations).
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The use of BSARs is consistent with USEPA guidance
and published research. The USEPA’s guidance for the risk
assessment of metals (USEPA 2007) suggests using regressions
to accommodate the mechanistic dependency (e.g., DeForest
et al. 2007) of a bioconcentration factor or bioaccumulation
factor on an exposure concentration. Linear regression also has
been used to characterize the bioaccumulation of metals in soil
(Sample et al. 1999; USEPA 2003). For many dioxins and
furans (tetrachlorodibenzo‐p‐dioxins/tetrachlorodibenzofur-
ans), Yunker and Cretney (2000) found BSAFs to be related
to sediment concentrations and, consequently, recommended
the use of a direct regression of sediment and tissue (i.e., a
BSAR) instead of a BSAF for these chemicals (In that example,
other factors such as soot carbonwere thought to be influencing
bioavailability in samples with higher tetrachlorodibenzo‐p‐
dioxins/tetrachlorodibenzofurans concentrations. The effects
of the OC sources or other factors on bioaccumulation are also
present in other systems. Wong et al. (2001) identified
numerous limitations with regard to the field application of
BSAFs, possibly attributable in part to the biotransformation of
chemicals by organisms.

The utility of regression‐based bioaccumulation models
(i.e., BSARs) is discussed in the USEPA’s most recent guidance
on BSAFs (Burkhard 2009). The guidance advises the careful
inspection of relationships between BSAFs and other site
factors to assess the linearity of the biota–sediment relationship
and determine whether multiple BSAF “populations” exist at a
site. In practice, BSAFs are often used regardless of evidence
that the relationship between tissue and sediment is either
not constant or not linear. In addition, although field and
laboratory bioaccumulation testing methodologies continue to
improve (Burkhard, Cowan‐Ellsberry et al. 2012; Melwani
et al. 2009; ORNL 1998; Parkerton et al. 2008), uncertainty
associated with the calculation approach for BSAFs is rarely
explored or discussed (e.g., confidence intervals [CIs] around
BSAFs are not reported, BSAFs are used as constants with no
variance).

Regression modeling practices are described in many
statistical textbooks (Box and Draper 1987; Neter et al.
1990; Zar 1996; Helsel andHirsch 2002). They can, and ideally
should, involve an iterative process of trying different models
and examining the error structures (i.e., differences between a
model’s predictions and empirical data) to select a model that
best describes the relationship between the model’s inputs and
responses (in this case, sediment or tissue chemical concen-
trations). This evaluation can also take the form of a simple
hypothesis test to determine whether the data fit a preselected
model.

In this paper, we are not focused on the process of model
fitting but rather on the consequences for managers. We are
interested in understanding how the CIs around predictions
from the site mean BSAF compare with those from a BSAR and
how those differences might affect a sediment remediation
decision. If a transformation of the data is required to make the
model linear, how does that affect the prediction of the PRG
and its CI? What strength of biota–sediment relationship is
needed to support risk or cleanup decision making? The
answers to these questions may influence cleanup decisions or
how dredged material is managed. Basing contaminated
sediment management decisions on flawed assumptions about
biota–sediment relationships could lead to expenditures in the
tens or hundreds of millions of dollars on actions that provide
little or no marginal environmental or public health benefits.
METHODS
Hundreds of publicly available datasets of paired sediment

and tissue chemistry data were screened using regression
analyses (i.e., BSARs) and predetermined performance criteria
to evaluate the strength and significance of the relationship.
After this initial screening step, BSAFs and regressions were
developed for 3 example paired sediment and tissue datasets.
These 3 datasets were chosen to explore the influence of model
selection and confidence intervals on model predictions. The
different models and their confidence intervals were compared,
and example sediment PRGs were calculated. Details on the
data sources, selection of datasets, and the models applied
(BSAF, BSAR, and model II) are provided below. The methods
for PRG calculation were fairly straightforward and generally
involved a reinterpretation of the biota–sediment relationships
so that the sediment, rather than the tissue, concentration
would be predicted.

Data sources

The EPA Mid‐Continent Ecology Division (MED) BSAF
database (USEPA 2008) was searched for example biota–
sediment relationships. This dataset includes approximately
20 000 BSAFs from 20 locations (mostly Superfund sites,
all field‐collected sediment and tissue samples) for non‐ionic
organic chemicals, including polychlorinated biphenyls (PCBs),
polychlorinated dibenzo‐p‐dioxins and polychlorinated diben-
zofurans, polycyclic aromatic hydrocarbons, pesticides, and
other compounds. Freshwater, tidal, and marine species are
included in the dataset. Only data with paired, detected
sediment and detected tissue concentrations are included in the
database. If either or bothwere not detected, the data pair is not
included in the database.

The number of nondetects and detection limits in either tissue
or sediment concentrations provides important information
about the uncertainty in the data and any sediment–tissue
relationship. Although the purpose of this paper is not to discuss
the methods for dealing with nondetects, and the database used
(i.e., the USEPAMEDBSAF database) excludes nondetect data,
the exclusion of nondetects from a dataset is not recommended.
When nondetects are present in a dataset, methods appropriate
for censored data (Helsel 2005, 2006) should be used.

In the USEPA MED BSAF database, 5 sedentary benthic
and epibenthic species that are relevant to ecological or human
health risk assessment were identified. Although some of these
species may feed largely from the water column, they were
selected because they are often used for the generation of
BSAFs. Only sedentary species were selected because their
relatively limited movement (as compared with that of fish or
crab) increased the likelihood of finding a biota–sediment
relationship. For these species, 344 of the datasets had more
than one sample, and 262 datasets had a sample size of 4 or
greater (Table 1). The datasets were from 5 different sites (i.e.,
each species included in the table was from a different site).
Most of the datasets (n¼ 164) for all organisms and species
groups were for individual PCB congeners (or co‐elutions). Of
the remaining 98 datasets, 55 involved individual polycyclic
aromatic hydrocarbons, 23 involved pesticides, 16 involved
dibenzo‐p‐dioxins or polychlorinated dibenzofurans conge-
ners), 3 involved total PCBs, and 1 involved tributyltin.

Selection of datasets for analysis

The 262 datasets were tested for a significant, linear
relationship between untransformed (i.e., arithmetic) tissue



Table 1. MED BSAF database datasets investigated

Organism/species group/location
Nr of datasets

(i.e., nr of chemicals)a
Nr of datasets
with n�4

Alewife floater (Anodonta implicata), Charles River, Massachusetts 6 6

Blue mussel (Mytilus edulis), Narragansett Bay, Rhode Island 42 33

Hard clam (Mercenaria mercenaria), New Bedford Harbor, Massachusetts 56 52

Hard clam (Pitar morrhuana), Coddington Cove, Rhode Island 52 38

Crayfish (unidentified), Willamette River, Oregon 188 133

Total 344 262

aData were available from only 1 study for each organism/species group/location. Thus, the number of datasets is equal to the number chemicals reported for
each organism/species group/location.
BSAF¼biota‐sediment accumulation factor; MED¼Mid‐Continent Ecology Division.
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and sediment concentrations, untransformed tissue and log (10)
transformed sediment concentrations, and log (10) transformed
tissue and log (10) transformed sediment concentrations.
Because all of the chemicals in the database were hydrophobic
organic chemicals, sediment concentrations were normalized
based on OC content, and tissue concentrations were normal-
ized based on lipid content before BSAR regressions were
performed per Burkhard (2009) recommendations. The same
evaluations in this paper may also be performed without
normalizing tissue or sediment concentrations, which would
allow more possibilities for identifying a relationship.
A regression model for any species–chemical dataset was

screened in for further evaluation as a BSAR if the linear slope
coefficient was significantly different than zero (p< 0.05)
and the coefficient of determination (adjusted r2) was 0.30
or greater (i.e., at a minimum, a weak relationship was
established). The strengths of the relationships were evaluated
as follows:
�
 No relationship: 0.0� r2< 0.3

�
 Weak relationship: 0.3� r2<0.5

�
 Moderate relationship: 0.5� r2< 0.7

�
 Strong relationship: 0.7� r2< 1.0
The weak, moderate, and strong relationship designations
were assigned for descriptive purposes and were not based on
any convention, and 3 datasets with a statistically significant
slope and a moderate or stronger relationship (i.e., r2�0.5)
were carried forward for more‐detailed analysis and discussion.
The evaluation of the significance and coefficient of

determination should be considered as an initial step in the
evaluation of a BSAR. In addition, linear regression models
should always be evaluated for goodness of linear fit, the
distribution of residuals around the model, evidence of
high‐influence data pairs—especially those with high
concentrations—and any issues related to data quality and
applicability to the question at hand. For example, are the
ranges of sediment and tissue concentrations sufficiently wide
that a linear relationship would be expected (or are the ranges
within the realm ofmeasurement error), are the data of uniform
quality and appropriately pooled so that the population to
which the inference will be drawn from the model is clear, do
the data include any nondetects or “greater than” data that
require methods that explicitly consider censored data? All of
these issues have been written about extensively in many
introductory statistical texts and so are not discussed in depth in
this paper. This additional model analysis was not a part of the
screening to select datasets for further evaluation.
BSAF calculations

For each dataset selected for more‐detailed analysis, BSAFs
were calculated using Equation 1.

BSAF ¼ Ctiss;LN
� �

Csed;OC
� � ð1Þ

Where
BSAF¼ site‐specific biota‐sediment accumulation factor

Ctiss,LN¼ organism tissue concentration, lipid‐normalized

(mg/kg lipid dry weight [dw])

Csed,OC¼ surface sediment concentration, OC‐normalized

(mg/kg OC dw)
A BSAF was computed for each biota–sediment pair in a
dataset, and the mean BSAF with its upper and lower 95% CIs
was calculated (Equation 2).

meanBSAF � tð:05;n�1Þ � SEBSAF ð2Þ
Where
SEBSAF¼ standard error of the BSAF

t¼ t‐statistic associated with the specified CI and sample

size (n)
The mean tissue concentration predicted for each measured
sediment concentration was calculated by rearranging Equa-
tion 1 to create Equation 3:

Ctiss;LN ¼ meanðBSAFÞ �Csed;OC ð3Þ
The CIs for each predicted tissue concentration were

calculated using the upper and lower confidence limits on
the BSAF in place of the mean BSAF. Likewise, sediment
concentrations (hypothetical PRGs or Csed,OC) for each
specified tissue concentration were “back calculated”
(Equation 4):
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Csed;OC ¼ Ctiss;LN
� �

meanðBSAFÞ ð4Þ

Again, confidence limits for predicted PRGs were calculated
by replacing the mean BSAF with the upper and lower
confidence limits around the mean BSAF in Equation 4.

Linear BSARs (Model I regressions)

Linear regressions developed for each data transformation of
each dataset that screened in were further investigated to select
the form of the relationship that was most linear and had the
most homoscedastic residuals. The selected BSARs were then
used for the calculation of tissue concentrations from sediment
as well as for the calculation of sediment concentrations from
tissue. Confidence intervals for both predicted sediment and
predicted tissue were also computed.

For 2 of the 3 datasets evaluated in greater detail, the form
that best met the assumptions of a linear model involved log
transformations of both tissue and sediment. The best‐fitting
linear regressionwas used to predict mean tissue concentrations
(Equation 5) along the range of measured sediment con-
centrations (CIs for the linear model). These are displayed
graphically in theResults andDiscussion section. In addition, the
empirical mean sediment concentration that had been used to
predict a given tissue concentration was back calculated for
each empirical tissue concentration and for the mean empirical
tissue concentration (e.g., toxicity reference value or other
risk based‐tissue level) (Equation 6). All calculations were
conducted in the programming language R (Version 2.12).

Ctiss;LN ¼ aþ b�Csed;OC ð5Þ

Csed;OC ¼ Ctiss;LN � a
� �

b
ð6Þ

The CIs around predicted mean tissue and back‐calculated
sediment concentrations were calculated according to Neter,
Wasserman, and Kutner (1990), as well as by bootstrapping
(Efron and Tibshirani 1986). The back calculations have the
same limitations as forward regression calculations. If model
assumptions (e.g., linearity, homogeneous residuals) have not
been met, the predictions and confidence intervals may not be
correct.

Each bootstrap iteration involved sampling n biota–sediment
pairs (with replacement) from the n biota–sediment pairs in the
dataset, fitting a linear regression to the bootstrap sample, and
saving the predicted mean tissue and back‐calculated sediment
concentrations from Equations 4 and 5. One thousand
bootstrap iterations were used to create a bootstrap distribution
of predicted tissue and back‐calculated sediment concentra-
tions. The mean predicted tissue and mean back‐calculated
sediment concentrations for each bootstrap distribution
were calculated, along with the 2.5th and 97.5th percentiles
(i.e., 95% CI).

When regressions are developed using log‐transformed tissue
and log‐transformed sediment concentrations, back‐transform-
ing predictions of mean (log)tissue or (log)sediment concen-
trations to the original arithmetic units results in an estimate
of the geometric mean (geomean) or median rather than
the actual mean. If measures of mean exposure or effect are
required, a correction factor could be applied to convert
the geomean to the mean (see “Smearing Factor for Log‐
Transformed Data” in the Supplemental Data for discussion).
However, those methods and results are not discussed in this
paper.

To avoid the nuances of interpreting corrected predictions, in
this paper, only bootstrap sampling was used to estimate the
mean and CIs around mean predictions of tissue and sediment
in the original units for regressions involving log‐transformed
variables. Each bootstrap prediction of (log)tissue and (log)
sediment was first exponentiated before the calculation of the
mean of the bootstrap distribution. This produced an estimate
of the true mean in arithmetic units. In addition, the 2.5th and
97.5th percentiles of the 1000 bootstrap predictions of (log)
tissue and (log)sediment were calculated and exponentiated to
generate CI estimates (in arithmetic units).

Model II approach

A form of Model II regression called the geometric mean
regression was also conducted in the programming language R
(Version 2.12). As with the selected BSARs, the Model II
regressions were then used for the calculation of tissue
concentrations from sediment as well as the calculation of
sediment concentrations from tissue. Again, confidence inter-
vals were computed for both predicted tissue and predicted
sediment.

Model II–type regressions, as discussed in Burkhard (2009)
and in many other sources (e.g., Sokal and Rohlf 1969, 2012),
are appropriate in cases inwhich the dependent variable has not
been measured without error (as is assumed in Model I
regressions, such as those discussed previously). The slope of a
geometric mean regression is a function of the slopes of the
regressions of X versus Y and Y versus X. As explained in
Equations 16 through 19 in Burkhard (2009), a geometricmean
regression was calculated for each pairing of (log)tissue and
(log)sediment as Equation 7:

Ctiss;LN ¼ aþ b�Csed;OC ð7Þ
Where
a¼mean(y)� b�mean(x)

b¼ sqrt(d/f, where d and f are regression slopes from the

equations below)

tissue¼ cþ d� sediment

sediment¼ eþ f� tissue
Because closed‐form CIs, r2 values, and significance are not
readily available for Model II regressions, CIs for Model II
regressions were constructed from bootstrapping (again, the
2.5th and 97.5th predictions from 1000 bootstrap iterations
defined the 95% CI).

RESULTS AND DISCUSSION

Tissue versus sediment regressions

Of the datasets and relationships tested, approximately one
third of the relationships met the screening criteria of statistical
significance and r2�0.3 (Table 2). Approximately one third of
the relationships that met the screening criteria were negative
(as shown in the total under the Summary of Coefficient of
Determination in Table 2). A negative relationship indicates
that as sediment concentrations increase, tissue concentrations
decrease.

Only a limited suite of chemicals in hard clam and crayfish
had relationships that passed the regression screening criteria



Table 2. Number of datasets and types of linear relationship between tissue and sediment

Type of relationship

Number of datasets

Tissue (mg/kg lipid):
Sediment (mg/kg OC)

Tissue (mg/kg lipid):
Log(sediment (mg/kg OC))

Log(Tissue (mg/kg lipid)):
Log(sediment (mg/kg OC))

Summary of coefficient of determination

r<0.0 (negative slope) 79 66 80

r2<0.3 (not even a weak relationship) 55 83 77

r>0 and r2�0.3 (some relationship) 128 113 105

Total 262 262 262

Summary of coefficient of determination and significancea

Negative/significantb 7 15c 13d

Weakc/significant 1 3 6

Moderated/significant 25 18 23

Stronge/significant 56 29 24

Total 89 65 66

aSignificant relationship defined as p‐value<0.05.
bAll negative and significant relationships were for individual PCBs or PAHs.
c0.3� r2<0.5.
d0.5� r2<0.7.
e0.7� r2<1.0.
OC¼organic carbon; PAH¼polycyclic aromatic hydrocarbon; PCB¼polychlorinated biphenyl.
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(i.e., r2� 0.3, p<0.05). For hard clams, PCB congeners and
total PCBs (for Mercenaria mercenaria) and chrysene (for
Mercenaria mercenaria and Pitar morrhuana) had passing
relationships. Dibenzo‐p‐dioxins/polychlorinated dibenzofur-
ans congeners, dieldrin, and PCB congeners had passing
relationships for crayfish (unidentified species). Many of the
relationships, including those described in Table 2, were for
individual PCB congeners. The dataset included only detect–
detect data pairs. Nondetect data (for sediment or tissue
concentrations) were not included in the database.

Example regressions/BSAFs

Three species–chemical combinations from the passing
datasets were selected for further analysis. The 3 examples
(PCBs in hard clam, chrysene in hard clam, and p,p0‐
dichlorodiphenyldichloroe–thylene [DDE] in crayfish) were
selected because they illustrate different issues for BSAR
development, had a moderate or stronger relationship (i.e.,
r2�0.5), included at least 8 ormore sediment–tissue data pairs,
and were more important from a risk perspective than some
other passing relationships (and therefore more relevant for
PRG development). Of the datasets that passed the screening
criteria, most would not be considered “good” linear relation-
ships based on the distribution of the residuals. This was also
true of the 3 BSARs selected for further evaluation. Residual
plots are presented in the Supplemental Data (Figures S1
through S3); ideally residuals in such plots would be
homogeneously distributed about the regression line. The
following 3 examples illustrate key findings from the develop-
ment of regressions and BSAFs.

Example 1. Importance of an intercept. Figure 1 presents total
PCBs in untransformed hard clam tissue versus untransformed
sediment collected in New Bedford Harbor, Massachusetts,
USA. This example illustrates the importance of considering
the intercept when characterizing the biota–sediment relation-
ship. Both BSAFs and BSARs with the intercept forced through
the origin tend to be biased to underpredict tissue concen-
trations at low sediment concentrations and overpredict tissue
concentrations at high sediment concentrations because they
fail to account for nonsediment sources (e.g., water) and,
consequently, have steeper slopes. Thus, PRGs developed using
BSAFs or by forcing a BSAR through the origin are liable to
overestimate the reduction in tissue chemical concentration
possible through sediment remediation. The 95% CI for
the BSAF is conical, with very high uncertainty around the
predicted tissue concentration at higher sediment concentra-
tions. In this case, the linear regression BSAR is strong (r2¼ 0.92
and p¼ 0.0002) and therefore similar to the Model II
relationship. This relationship was one of the best found in
the database screened; using untransformed data, the relation-
ship is quite linear across 2 orders of magnitude and also has
fairly homogeneously distributed residuals (see the Supple-
mental Data, Figure S1).

Example 2. Nature of the relationship. Figures 2 and 3 present
chrysene in hard clam tissue versus sediment from Coddington
Cove, Rhode Island, USA. This example illustrates the
importance of considering the scale of the relationship being
investigated (e.g., linear, log linear, or nonlinear). Figure 2
shows the linear regressions for log‐transformed (both sediment
and tissue are log‐transformed) and untransformed data
(neither sediment nor tissue is transformed) plotted on a log
scale. The relationship using untransformed data does not meet
the screening criteria based on strength of relationship and
significance, but the relationship using log‐transformed data is



Figure 1. Hard clam (Mercenaria mercenaria) tissue versus sediment—total PCBs. New Bedford Harbor, Massachusetts, USA.
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moderate and significant (r2¼ 0.6, p¼ 0.0146). In this exam-
ple, predictions of tissue from sediment at the lower ranges of
sediment concentration or vice versa would be strongly affected
by the choice of the biota–sediment model. Figure 3 shows the
BSAF,Model I linear (i.e., predicted [log] tissue regression [also
shown in Figure 2]), andModel II regressions for the same data,
also on a log scale. In this example, the moderate (but not
strong) relationship between log‐transformed tissue and log‐
transformed sediment causes the linear regression (Model I)
and Model II relationships (Figure 3) to differ more than that
for the PCBs in the hard clam tissue dataset represented in
Figure 1.

The chrysene in hard clam tissue example also illustrates
several considerations that arise when using log‐transformed
data in a linear model. First, the linear relationship described
Figure 2. Hard clam (Pitar morrhuana) tissue versus sediment—ch
using log‐transformed data is linear over orders of magnitude,
and variance around predictions in the original units can be
high. In addition, backtransformations of predictions of mean
(log) tissue are geometric means and, as such, can underesti-
mate mean risk. As mentioned, conversion factors must be
applied to correct the backtransformation from the geomean to
the mean, and these correction factors are accurate when the
data are truly lognormal. The difference between the geometric
mean and the mean can be large for lognormal distributions,
especially those with high variance. This difference can be so
large that the true mean exceeds the backtransformed CIs
around the geometric mean. Given that CIs are generally
expected to contain central tendencies, this scenario (i.e., the
mean is outside the CIs of the geometric mean) is difficult to
interpret.
rysene. Coddington Cove, Rhode Island, USA (linear regressions).



Figure 3. Hard clam (Pitar morrhuana) tissue versus sediment—chrysene. Coddington Cove, Rhode Island, USA (BSAF, Model I, and Model II regressions).
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Example 3. Influence of a single high point, model choice, and
model fit. Figures 4 and 5 present p,p0‐DDE in crayfish tissue
versus sediment collected in the Willamette River, Oregon,
USA. In Figure 4, 2 linear regressions are included: 1 that uses
all data and 1 that excludes the highest data pair. Removing the
highest pair changes the relationship from strong and significant
to insignificant. This is an example of a relationship whose
significance would be highly affected by a nondetect in tissue or
sediment when the other variable was high.
The highest pair in this dataset has amuch larger effect on the

regression (as measured by outlier statistics including Leverage,
Cook’s Distance, andDFBetas) than any of the other data pairs;
and when the highest pair is included in the model, the
Figure 4. Unidentified crayfish tissue versus sediment p,p0‐DDE—Willamette Ri
distribution of residuals indicates that a linear model is not a
good fit (see Figure S3 in the Supplemental Data). Explanations
for the highest pair should be explored and discussed; for
example, it could indicate the presence of more than one
population of biota–sediment relationships in the dataset.
Multiple populations could be created by fine or large‐scale
heterogeneity in physical or biological factors. If the highest pair
is not part of the same population as the rest of the data but is
retained in the dataset, tissue concentrations at lower sediment
concentrations will likely be underpredicted. If the model
(including the highest pair) is then used to back‐calculate a
sediment PRG, the reduction in the tissue chemical concentra-
tion that could be achieved in most of the population through
ver, Oregon, USA (regression of all data, regression excluding highest point).



Figure 5. Unidentified crayfish tissue versus sediment p,p0‐DDE—Willamette River, Oregon, USA (BSAF, Model I, and Model II regressions).

Evaluation of Statistical Bioaccumulation Models—Integr Environ Assess Manag 10, 2014 109
sediment remediation will likely be overestimated (i.e., the
desired lower sediment concentration would not be achieved).
If the highest pair appears to be valid and is the sole cause of a
significant relationship, data transformations or other types of
models should be considered.

With the inclusion of the highest data pair, the linear
regression (Model I) and the Model II relationships (Figure 5)
are fairly similar. If the highest pair were to be removed, the 2
relationshipswould be less similar (as with Example 2, chrysene
in hard clam tissue). If the highest pair is considered to be valid,
a hockey stick regression could be considered if it is plausible
that 2 populations are present in the data or that a threshold
response is justified (see Figure S4 in the Supplemental Data).

As with the chrysene example, this example (i.e., p,p0‐DDE
in crayfish tissue) demonstrates the importance of considering
the scale of the relationship and, consequently, the scale at
which predictions are valid. If the sediment and tissue
concentrations are not logged, the regression is weaker and
not significant (r2¼ 0.39, p¼ 0.07). Because the BSAF is
computed in the original units, it could be considered
insignificant as well. In addition, as with Example 2, because
the BSAF does not include an intercept, the BSAF slope is
steeper than both the linear (Model I) and Model II relation-
ships and will result in underpredictions of tissue concen-
trations at low sediment concentrations and overpredictions of
tissue concentrations at high sediment concentrations. The low
data pair in Example 2 is quite influential, perhaps in a way that
is analogous to the high data pair in Example 3.

Calculation of PRGs from Example Regressions and BSAFs.
Table 3 presents PRGs calculated for all 3 of these examples
using various models. The PRGs are usually defined as the
sediment concentrations associated with specific target tissue
concentrations, which may be equal to ecological toxicity
reference value or human health risk–based tissue concen-
trations. In these examples, the target tissue concentrations
selectedwere equal to themean tissue concentrations as plotted
on the y axis (raw or log‐transformed). Thus, the CIs on
regressions are at their narrowest. In reality, a target tissue
concentration is likely to be lower than the existing mean tissue
concentration, which will generally result in predicted PRGs
with wider CIs that extend beyond the range of measured
concentrations. When the relationship is on a log scale, the
uncertainty in the PRGs may span orders of magnitude.

To avoid the complication of converting between mean
target tissue concentrations and geometric mean values in log
relationships (as discussed in the methods for linear BSAFs), a
bootstrap approach was used for estimating the PRGs and 95%
CI for the BSARs and Model II regressions of logged relation-
ships (i.e., chrysene and p,p0‐DDE). For total PCBs (a raw data
BSAR relationship), the PRG and CI were calculated using
the statistical formulas for reverse predictions as well as the
bootstrapmethod. The results of the 2 approacheswere similar.
The minimum and maximum empirical sediment concen-
trations are presented for reference.

Another issue associated with the calculation of sediment
PRGs for hydrophobic organics is that toxicity reference values
and target tissue concentrations are often not expressed on a
lipid‐normalized basis. Total tissue concentrations must be
converted to lipid‐normalized concentrations, often using
average lipid concentrations. The models then generate PRGs
in terms of sediment OC concentrations.

In the case of p,p0‐DDE (as discussed earlier in Example 3),
the relationship was driven by the single highest data pair. A
hockey stick regression was applied (see Figure S4 in the
Supplemental Data) and provided a reasonable fit. The PRGs
and CI generated from the hockey stick regression are also
reported in Table 3. The mean PRGs from the hockey stick
regression are higher than the BSAF estimate but lower than the
estimates provided by the BSAR and Model II regressions.
However, the CI for the hockey stick PRG estimate is narrower
than those for the other models.

The use of reverse regressions (i.e., sediment vs. tissue) to
develop PRGs was also considered. Although linear regression
is generally used to predict a “dependent” variable (y)
determined by an “independent” variable (x), a direct,
ecological, mechanistic dependence of y on x (e.g., tissue on
sediment) is not necessarily required if the ability to make



Table 3. PRGs calculated using various approaches

Chemical and target
tissue concentration Model

Median PRG
(mg/kg OC)

Mean PRG
(mg/kg OC)

2.5th

Percentile
(mg/kg OC)

97.5th

Percentile
(mg/kg OC)

Minimum
sediment
(mg/kg OC)

Maximum
sediment
(mg/kg OC)

Total PCBs
(93519 mg/kg lipid)

BSAR 99311 99311 67488 131134 3152 326755

BSAR bootstrap 99351 98584 71768 121341

BSAF 72907 72907 41355 307544

Model II bootstrap 100434 99441 74279 121729

Chrysene
(1585mg/kg lipid)

BSAR (log‐log) bootstrap 6173 6545a 3650 10782 605 13240

BSAF (log‐log) 4491 4491 3066 8388

Model II (log‐log) bootstrap 5766 5913a 3831 9010

p,p0‐DDE
(1413mg/kg‐lipid)

BSAR (log‐log) bootstrap 1193 2704b

5.51Eþ284a
0 5.63Eþ07 57.8 20625

BSAF (log‐log) 401 401 235 1373

Model II (log‐log) bootstrap 1038 2164a 657 11257

Hockey stick (log‐log) 1426 1372b

1396a
1170 1718

Table uses mean empirical tissue concentration as target tissue concentration.
aMean(10^log(PRG)).
b10^mean(log(PRG)).
BSAF¼biota‐sediment accumulation factor; BSAR¼biota‐sediment accumulation regression; DDE¼dichlorodiphenyldichloroethylene; OC¼organic carbon;
PRG¼preliminary remediation goal.
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protective management decisions does not require an exact
quantification of partial correlations and their drivers (as might
be attempted through path analysis). For example, for a given
contaminant, concentration cycling may be occurring at a site
such that benthic tissue concentrations do not depend strictly or
solely on sediment concentrations. Both tissue and sediment
concentrations might be dependent on the rate at which the
chemical is entering the study area, and the decomposition of
benthic tissue might be contributing chemical mass back to the
sediment. This type of conceptual site model might support the
use of a Model II–type regression; however, if the primary
management objective is the determination of a sediment PRG
with minimum variance from a tissue–residue threshold,
the model could be framed so that the sediment PRG is the
dependent variable in a Model I regression, which would
minimize the residual variance in the dependent variable.
The use of a sediment–biota model as opposed to a biota–

sediment model does not relieve the analyst or policy maker of
any of the issues discussed in this paper. These include statistical
or inferential issues related to inappropriate sampling design,
inaccuracy or imprecision in themeasurement of sediment and/
or tissue and their pairings, the need for an intercept in the
model, or the transformation of the data to produce a linear
model. After all of these issues have been considered, the use of
sediment as the dependent variable in a Model I regression
could potentially increase the precision of PRG estimates.

SUMMARY AND RECOMMENDATIONS
Our search of the USEPA database and the examples

presented in this paper show that for many datasets, not even a
weak statistical relationship can be found between measured
sediment concentrations and tissue concentrations. As noted
by Burkhard, Arnot, et al. (2012b), “The key to measuring
meaningful bioaccumulation metrics with accuracy is that the
samples for the exposure medium must be representative of
the actual exposure of the organisms collected. Furthermore,
adequate field collection designs must also account for
variability in the exposure concentrations and tissue residues.”
Many, if not most, study designs do not meet this standard; and
when they do not, it is not possible to accurately quantify the
uncertainty in biota–sediment relationships and any predictions
based on these relationships.
Even when data are collected using a valid design, likely

predicted tissue concentrations or PRGs and their associated
CIswill differ depending on themodel used and the sediment or
tissue concentration used to predict the other variable.
Consequently, selecting a model that best characterizes the
relationship between tissue and sediment, both statistically and
in terms of other relevant information, is important. The
examples presented in this paper highlight some key consider-
ations when developing biota–sediment relationships. These
considerations include the following:
�
 Treatment of nondetects: What is the detection
frequency and do the models explicitly account for
nondetects?
�
 Model selection criteria: How good does a model need to be
to be useful in a given management context?
�
 Shape of the relationships: Should the model include an
intercept? What is the appropriate form of the model
(linear, nonlinear, curvilinear)? Should the data be
transformed?
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�
 Validity of the data: Were the data collected according to a
valid study design in which exposure areas and target
organisms were truly matched?
�
 Presence of more than one population: Do the data indicate
different biota–sediment relationships across the range of
sediment concentrations measured?
�
 Use of BSAFs versus BSARs: What are the advantages of
BSARs over BSAFs?
Treatment of nondetects

The analyses presented here rely on data from the MED
BSAF database (USEPA 2008), which provides data for over
20 000 potential biota–sediment relationships (based on
different chemical, species, and location data). This database
does not include data for which either the sediment or tissue
concentration of a data pair (or both) were nondetects. This is
consistent with USEPA guidance on the use of only detect–
detect pairs for BSAF development (Burkhard 2009). Howev-
er, some datasets may have both high tissue concentrations and
nondetected tissue concentrations at the highest sediment
concentrations. If nondetects are not included in a dataset
(as with the USEPA MED BSAF database [USEPA 2008]),
one might overestimate the strength of a relationship.
Therefore one must be explicit about whether nondetects
have or have not been excluded and consider the impacts
of their inclusion or exclusion on relationships and model
predictions.

Assuming that detection limits are low, 2 different situations
involving nondetected concentrations can be anticipated when
evaluating the relationship between tissue and sediment
concentrations at a site. In the first situation, the dataset
includes one or more pairs with both high tissue and high
sediment concentrations, as well as one or more pairs with a
high concentration in one medium (either tissue or sediment)
and a low or nondetected concentration in the other. This
situation indicates uncertainty about the relationship between
tissue and sediment. The reasons for this uncertainty should be
explored; these might include different physical conditions at
the locations where the 2 types of pairs were collected, which
would imply the presence of different populations within the
site and raise questions about how data should be pooled at the
site, or the use of individual organisms that reveal differential
uptake among individuals.

The second situation arises when neither tissue nor sediment
concentrations are detected (i.e., a nondetected pair). In this
situation, justifying removing the nondetected pairs if the
detection limits for sediment is well below the range of
sediment concentrations within which a PRG would be set or
the detection limit for tissue is well below the range for which
tissue concentrations would be predicted might be possible. As
long as the predictions (for sediment or tissue) always fall within
the range of detected concentrations, stratifying the population
of concentrations so that only detected concentrations
are modeled is valid, inasmuch as these concentrations
constitute the population of interest, and the relationship
between tissue and sediment below the detection limits does
not affect the relationship above detection limits.

In all situations, the proper approach for dealing with
nondetects can only be determined after careful consideration
of (1) the frequency of nondetects, (2) the number of detection
levels in each variable and the number of nondetects at each
detection level, (3) any temporal or spatial factors correlated
with nondetects that might help refine the definition of the
population of interest and determine which data should be
included in the final dataset, (4) the number and position of
nondetected pairs in the dataset, (5) the position of target tissue
concentrations within the range of detected and nondetected
empirical tissue concentrations used to develop the model,
and (6) the range of detected sediment concentrations used to
develop the model. Nondetected data provide useful, and in
some cases critical, information about the statistical, spatial, and
temporal distribution of tissue and sediment concentrations at a
site, as well as the relationship between tissue and sediment
concentrations. The removal of nondetected data should be
predicated on thoughtful consideration of how their removal
would change the population being modeled and how the
regression will be applied. If, after consideration of all these
questions, the removal of nondetected data seems to be “valid”
from a site management or policy perspective, evaluating the
effects of the removal of any nondetected data by conducting
analyses, with the nondetects included, using methods
appropriate for censored data (e.g., nondetects and data
analysis in the programming language R) as well as without
the nondetects, may still be useful. A comparison of the results
of both approaches could be used to validate assumptions and
uncover any nuances that may have been overlooked during a
priori considerations.

Model Selection Criteria

Based on the data compiled by USEPA in the MED BSAF
database (USEPA 2008), few of the benthic invertebrate biota–
sediment relationships met the assumptions required to fit a
regression and calculate valid CIs. Of the 262 datasets
evaluated, approximately two thirds of the biota–sediment
relationships were very poor and did not meet minimum
screening criteria (i.e., r2>0.3, p< 0.05). Better guidance on
sampling design should be developed to improve the quality of
BSAFs and BSARs by adding to our knowledge of chemical
bioavailability and exposure processes. Furthermore, if the goal
of developing biota–sediment relationships is for decision‐
making, minimum criteria should be established for acceptable
data quality and quantity and biota–sediment relationships.
What quality and quantity of data are required to determine
whether a relationship exists? What strength of relationship
between tissue and sediment would be needed to make a
prediction meaningful? Using a regression approach allows for
the evaluation of the strength (r2), significance (p‐value), and
shape of the relationship to be evaluated.

Given the profound differences in tissue predictions and
estimated PRGs that can result from different statistical
approaches, one must be extremely clear regarding
�
 The strength of the relationship between tissue and
sediment that would be needed to make a prediction
meaningful
�
 The extent to which modeling the uncertainty in both
variables is considered necessary for the predictions to be
meaningful
�
 Informational goals (i.e., is tissue or sediment being
predicted?) and how informational needs change through
the risk evaluation and remediation process
�
 Whether the relationship is linear or, if it is not, how the risk
assessment process should accommodate the nonlinearity
�
 Whether the data are of sufficient quality to provide
meaningful information (e.g., they do not have substantial
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analytical errors, they are spatially colocated in a meaning-
ful way)
Shape of the relationships

Considerations of the shapes of the relationships have been
illustrated by the three examples discussed in detail. These
considerations include whether the model should include an
intercept, the appropriate form of the model (i.e., linear,
nonlinear, or curvilinear), and whether the data should be
transformed. Decisions about model shape affect the validity of
the model, as well as the tissue and sediment predictions.

Validity of the data

When evaluating biota–sediment relationships, one must be
aware of the study design and any issues associated with its
execution. Is there any reason to expect that the sediment
samples might not reflect the exposure of the organisms whose
tissue is being modeled? Were any sampling constraints
associated with any or all of the sediment samples collected?
Are there abnormalities with the analytical data (e.g.,
unexpected number of nondetects)? These questions should
be considered in the evaluation of biota–sediment relationships.

Presence of more than one population

The possibility that more than one population exists should
also be considered. Aremultiple species being used to develop a
single biota–sediment relationship? Are there physiological
reasons to expect that organisms might process exposures
differently beyond a certain threshold? Are there differences in
the ages of the organisms sampled? Numerous reasons exist
for why multiple populations might exist in a dataset, and
these should be considered when evaluating biota–sediment
relationships.

Use of BSAFs versus BSARs

Further evaluation of 3 of the stronger biota–sediment
relationships from the MED BSAF database (USEPA 2008)
identified several ways in which BSARs may be preferable to
BSAFs when quantifying the nature of the biota–sediment
relationship at a site, especially when predictions of tissue or
sediment concentrations are to be made for risk or remedial
decision making. BSARs have an advantage over BSAFs in that
they allow for the consideration of nonsediment contributions
to tissue burdens via themodel intercept, the exploration of the
correct scale of the biota–sediment relationship (e.g., linear, log
linear, or nonlinear), and the exploration of any temporal or
spatial explanations for statistical outliers or nonlinearities
within the relationship. With BSARs, it is also possible to
develop and apply criteria for the exclusion of data (e.g., a
specified leverage value). These types of evaluations can
provide more information about the level of confidence in
the relationship, help identify the best model, help identify
whether multiple or subpopulations exist in the dataset, and
aid in understanding whether other factors are affecting the
biota–sediment relationship (e.g., other biological or sediment
chemistry factors).
Although they have limitations, BSARs are better suited than

BSAFs for answering practical sediment management ques-
tions. BSAR derivation does not presume that the relationship
between tissue and sediment chemical concentrations is of a
particular form, or even that such a relationship exists. BSARs
tend to be based on a statistical analysis of site‐specific data, and
so they are governed by what the data say. Generally speaking,
BSARs describe data trends, how well the underlying data
fit the trend, and whether any particular data are unduly
influencing BSAR selection. This promotes an understanding of
model limitations and allows for uncertainties to be acknowl-
edged, understood, and quantified.
In summary, BSAFs and BSARs, including Model I and

Model II regressions, are often relied on to make important
decisions with significant financial consequences, based on the
presumption that those decisions will yield public health and
environmental benefits. These decisions, committing many
millions of dollars, are beingmade based onmodels that include
large, unacknowledged uncertainties and, at least in some
cases, are simply invalid. When biota–sediment accumulation
relationships and their uncertainties are better understood and
modeled, better public health and environmental cleanup
decisions should follow.
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